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Abshact. Usinga method inmduced earlier, the exact solutions ofground sAes ofneulral donor 
(Do) centres in different quantum dots (QDS) have been obtained, and, taking the Chandrasekhar- 
type function as a trial function. the ground stakes of negative donor (D-) centres in QOS have 
been calculated. The dimensionality and potential-shape effects of QOS on the binding energies 
Es(DO) and EB(D-) of Do and D- centres have been studied. The ratio U of EB(DO) to 
Ee(D-) has clearly demonstrated the so-called freem-out effect in different QDS. According to 
the value of a obtained, calculated results of different quantum-well svucturcs can be checked 
and compared with others. It has been shown that the fieem-out effect and the electron- 
carrelation effect are strongly dependent on the dimensionality of QDS and weakly dependent 
an the potential shape, and that the polan’ntion term of the trial function not only brings in 
the important elecuon-correlation effect but also modifies Ule behaviour of the singleeleeuon 
orbitals. 

Recently, the electronic structures and properties of neutral and negative donor centres 
in various low-dimensional structures, such as two-dimensional quantum wells (2DQWS). 
quantum-well wires (QWS) and quantum dots (QDS), have been the subject of considerable 
study [l-91. The fundamental study is important in its own right as reducing the 
dimensionality often introduces unexpected physical phenomena. 

In order to achieve a better understanding of the dimensional characteristics of multi- 
electron systems with less positive ion centres, a D- centre in a spherical quantum dot has 
been studied [Z]. However, one effect not addressed by the study is the effect that the 
dimensionality and potential shape of Q o s  have on the binding energy, the ratio of D- to 
Do binding energy and the electron correlation. This effect should be considered to obtain 
the correct quantum levels of a D- centre in a quantum dot because there are different 
neutraldonor wavefunctions in different QDS and they can cause quite different Coulomb 
and exchange potentials seen by the other electron. The dimensionality and potential-shape 
effect on D- states is related to but different from that on Do states, and, therefore, it is 
interesting to investigate both of them. 

This paper explores the effect on the binding energies of Do and D- ground states in 
QDs. This is done by determining the ground states for 3D Do and D- centres in QDs with 
a spherically rectangular potential well or a 3D isotropic parabolic potential and comparing 
the results with those for 2D Do and D- centres in QDs with a circularly rectangular potential 
well or a ZD isotropic parabolic potential. For definiteness let us write down the potential 
forms for the QDS mentioned above. The forms of circularly and spherically rectangular 
potential wells am given by 
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and 

i f r  < R o  V ( r )  = 

whereas the 2D and 3D isotropic parabolic potentials have the forms 

(3) I 2 2  V ( P )  = ;Y P 

V ( r )  = L 4y 'r' 

and 

(4) 

respectively. In the above equations & is the radius of a QD and p and r are electron-qo 
(donor) centre distances in ZD and 3D conditions, respectively. In this paper, effective atomic 
units are used so that all energies are measured in units of the effective Rydberg Ry* and 
all distances are measured in units of the effective Bohr radius a'. It is interesting to point 
out that the parabolic potential introduced by a magnetic field perpendicular to the 2D plane 
is equal to that shown in (3) if the dimensionless magnetic-field strength in effective atomic 
units is equal to y ,  which is related to the confinement energies. This is the reason why 
the forms of (3) and (4) are taken. 

The Hamiltonian for an electron in a QD and a neutral donor Do at the centre of the QD 
is 

-A3 - 2Wfr + V ( r )  I -A* - 2Wfp + V ( p )  
for 3D QDS 

for 2 0  QDS (5) H ( W )  = 

where A3 and A2 are respectively 3D and 2D Laplace operators, V ( r )  and V ( p )  are 3D 
and 2D QD potentials as shown above and W is respectively equal to zero and one for the 
electron and the donor in the QDs. The orbital (1) and magnetic (m) quantum numbers can 
be well defined for the 3D QDS, whereas the magnetic (m) quantum number can be well 
defined for the ZD QDs. The radial equations can be solved exactly by using the method 
introduced by us [lo], and, then, the nth eigenenergies Em([, W = 0) and E,,(Z, W = 1) and 
the corresponding eigenfunctions @,?(r, W = 0)  and @i')(r, W = I ) ,  which are degenerate 
with respect to m, can be obtained for the 3D electron and donor in 3D QDS. This is similar 
to the method of obtaining the nth eigenenergies E,,(m. W = 0)  and E,(m, W = I )  and $Am)@, W = 0) and $Am)(p. W = 1). which are degenerate with respect to m and -m, for 
the 2D electron and donor in 2D QDs. Compared with the binding energy of a Do centre in 
a 3D, 2D or ID system, the binding energies of the Do ground and excited states in QDs can 
be defined as follows: 

E n ~ ( Z ,  Do) = &(Z, W = 0) - En(Z, W = 1) (6) 

and 

&(m, Do) = E,(m, w = 0) - E&, w = 1) (7) 

for 3 0  and ZD QDs, respectively. Therefore, the binding energies EB(DO) of the ground 
states are given by 
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for the 3D and ZD parabolic potentials, and 

for the 3D and ZD rectangular potentials where the fist terms on the right-hand side (RHS) 
in the equations are ground-state energies of an electron in 3D and 2D parabolic potentials 
and 3D and U) rectangular ones, respectively. 

The Hamiltonian for a D- in a QD is given by 

H(1, w) f H ( 2 ,  w) f 2/r12 
H(1, w) + H ( 2 ,  w) f 2 / P n  

for 3D QDS 

fOr ZD QDS 
H = (  (10) 

where H ( i ,  W )  is the Hamiltonian of the ith electron and the positive donor ion in the QD 
as given in (5) and Z/rlz  and 2/p12 are interaction terms of the two 3D and two 2D electrons, 
respectively. 

To determine the ground states (spin singlet states) in the QDs, a trial function that 
includes the electron-correlation effect and approaches the Chandrasekhar-type trial function 
at y = 0 or Ro + 00 is used [ 111. It is as follows: 

for 3D QDS 
(11) 

A(1 + c r i ~ ) I @ Q ~ , r ~ ) @ l ( A ~ , r z ) + @ ( A z ~ r ~ ) @ l ( A ~ , r ~ ) l  
B(1 f CPIZN@(AI+ p t ) $ ( h  Pz) + @(hz,Pi)@@i2 Pz) )  

.=( 
for 2D QDS 

where C, A, and A2 are variational parameters and A and B are the normalization constants. 
@(A;, ri) and @(Ai, pi) are exactly the lowest eigenfunctions of hydrogenic donors with the 
ion charge A< in the 3D and 2D QDs, respectively. A], Az and their difference AA = AI  - Az 
describe one part of the two-electron correlation while the factor (1 + Crlz) or (1 + Cplz) 
describes the other. In the limiting case of y = 0 or RO + 00, it is clearly seen that the 
electrons are in ground-state hydrogenic orbitals; they tend to stay apart, keeping their 
repulsive interaciton energy down as indicated by the correlation factor (1 + Crlz) or 
(1 + Cplz), which becomes relatively small as rIz -+ 0 or plz + 0. It is interesting 
to point out that for D- centres in different QDs, using the same kind of trial function 
as (11) is quite good for comparison, and, therefore, it is possible to obtain a reasonable 
conclusion based on variational calculations with the exact results of ground states of the 
electron and the Do centre in the QDs. Compared with the binding energy of a Do centre in 
QDs as mentioned above, the binding energy of the D- ground state in the QDs is defined 
as follows: 

EB@-) = E(DO) + Eo - E(D-) = 2Eo - &(Do) - E@-) (12) 

where E(D-) is the lowest level of the Hamiltonian of (10). i.e., the D- ground-state energy 
in QDS, Eo and E@") are, respectively, the lowest levels of an electron in the QDS without 
and with the Coulomb potential and &(Do) is the binding energy of the neutral donor as 
defined in (8) and (9). 

In order to study the y and Ro dependence of the binding energies &(Do) and EB(D-) 
of Do and D- centres in QDs and the dimensionality and potential-shape effects of QDs on 
them, numerical calculations have been performed for 2D and 3D rectangular-potential QDs 
(2D and 3D RQDs) and 2D and 3D parabolic-potential QDs (2D and 3D PQDs). As shown in 
table 1, it is readily seen that as y increases, both the EB(DO) and EB@-)  in 2D and 3D PQDs 
increase monotonically from their 2D and 3D values to quasi-zero-dimensional ones, and the 
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values are always larger for the 2D case than for the 3D case. To study the potential-shape 
effect of QDs on the binding energies of Do and D- centres, we have also given EB(Do) 
and EB(D-) of 3D and 2D RQDs as functions of the effective y*, which is, respectively, 
defined as 6.580/Rg and 5.783/R& The effective y* means that the ground-state energies 
of an electron in 3D and 2D PQDs are respectively equal to those in 3D and ZD RQDS if y' 
is taken to be equated to y .  As shown in the table, the binding energies of both Do and 
D- centres in 3D and 2D RQDs increase slightly faster than those in 3D and 2D PQDs as both 
y and y* increase. What we have mentioned above means that the binding energies are 
mainly dependent on the dimensionality (3D or 20) of the QDS and the confinement energies, 
and that for the same confinement energy and dimensionality, they are slightly dependent 
on the potential shape. 

Table 1. Binding energies En@? and EB(D-) of Do and D- ground states in 3D PQDS, 3D 

RQDS, ZD QWS. w FQDs and w RQDS with y ( y ' )  = 0, 0.1, 1. 3, IO, 100. The corresponding 
radius Ro of 30 and m RQDS is also presented (see Ihe text). The values of ID QWS and Ihose 
in bnckefs are tlken fmm [I21 and [8], respectively. Effective atomic uniIs. i.e., the effective 
Rydberg Ry* and Bohr radius U ' ,  are used. 

Y (Y ' )  

0 0.1 I 3 10 100 

En@') 1.00 1.143 2.01 3.14 5.40 16.31 
3D PQDs En@-)  0.0518 0.165 0.54 0.90 159 4.79 

(0.056) 

EnOD) 1.00 1.143 2.16 3.51 6.14 18.70 
3~ ~ a o s  En(D-) 0.0518 0.165 0.60 1.00 1.72 5.05 

RU W 8.112 2,565 1.481 0,811 0.257 

EBID') 1.69 - 2.44 3.24 4.73 - .. . 
(1.74) (2.52) (3.36) 

Z D Q w s  EB(D-) 0.212 - 0.639 0.906 1.33 - 
(0.23) (0.65) (0.94) 

EB(D') 4.00 4.101 4.91 6.33 963 26.55 
ZD PQDE Ee(D-1 0.454 0.549 1.11 1.76 2.91 1.98 

(0.511) 

EB(D") 4.00 4.101 4.99 6.69 10.60 30.40 
20 RQDs En(D-) 0.454 0.554 1.22 1.95 3.20 8.53 

RO m 7.605 2.405 1.388 0.160 0.241 

In order to achieve a better understanding of the dimensionality and potential-shape 
effects of QDs on Do and D- centres, we have also shown the values of EB(DO) and 
E&-) of 2D QWs of G a ~ . ~ s A l o . ~ A s  with L = 200 8, (about 21') [8,12] for the same 
y and calculated the ratio U of D- to Do binding energy in different QDs. As shown in 
figure 1, with increasing y (y ' ) ,  U values increase from the ZD and 3D values up to certain 
approximately constant values. This is the so-called freeze-out effect. This feature can be 
explained as follows. The extension of the outer orbital in a D- centre sharply decreases 
with increasing confinement in a small-y ( y * )  regime, compared with the extension of a 
neutral donor orbital, which decreases rather slowly, and the decreases in extension of both 
Do and D- orbitals with increasing confinement in a large-y (y ' )  regime are in much the 
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same ratio. In fact, both wavefunctions are mainly dependent on y ( y * )  and the Coulomb 
potentials can be taken to be perturbation terms if y (y ' )  is large enough. The perturbation 
calculation can also give the l i t  value of U .  which is very close to what we show here. It 
is clearly shown that the limit value of U is about 0.3 for 3D and 2D PQDs while it is about 
0.21 and 0.12 for the corresponding QWws [9] and 2D QWs [8,12], and that the limits of 
the other 3D and ZD QDs are slightly different from those of 3D and 2D PQDs, respectively. 
This means that the freezeout effect (the limit value) is strongly dependent on the confined 
dimensionality and weakly dependent on the potential shape. 

0.0 
0 2 4  6 8 10 

r , r* 

" - t  C 
2 1 

I I 
0 2 4 6 8 1 0  

r 
Figure 1. The ratio B of EB(D-) to E B ~ ' )  versus 
y (y ' )  for 1D (solid line a) and 30  (solid line b) PQDS 
and z~ (dashed line c) and 3~ (dashed line d) RODS. 

The solid circles and uiangles represent the. ratios for 
w QWS with magnetic field y hom [SI and [El. The 
dmhed-dotted lies e and f represent those for QWWS 
from 191 and ZD QWWS from [I%). respectively. 

Figum 2. Variational panmetea A t  and 1 2  with C # 0 
(solid lines) and A1 and Az with C = 0 (dashed lines) 
versus y for D- ground states in U) PQDS. 

The variation of U with y ( y ' )  can be quite different between 3D and ZD QDs as shown 
in figure 1. It is readily seen that U increases from 0.0518 to the limit value for 3D QDS 
much faster than from 0.113 to the limit value for 2D QDs and U of RQDs increases faster 
than the corresponding one of PQDs as y ( y * )  increases from zero to three. It is worthwhile 
to note that in the regime of y ( y * )  between zero and three, U of 3D QDs can be larger 
than that of 2D QDs even though it is much smaller in the pure 3D case than in the pure 
ZD case, and both EB@') and EB(D-) of 3D QDs are smaller than the corresponding ones 
of 2D QDS. Comparing ZD QWS in the absence of a magnetic field with the pure 3 0  and 20 
results, we find that U of ZD Q w s  is larger than those of both pure 3D and 2D cases. It is 
similar to those of 3D and ZD RQDs. U (0.302 and 0.280) for y* = 10 of 2D and 3D RQDs 
are larger than the corresponding U (0.281 and 0.270) of y*  = 100. This means that for ZD 
QW and RQD systems there is a maximum ratio reached before the limit value is obtained. 
This is an interesting problem to study further. 
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It is well known that electron correlation effects play an important role in determining 
the electronic structures and the binding energies of D- ground states, so a reasonable 
trial function should include these effects. As shown in (ll),  the correlation term of two 
electrons is included in the Chandrasekhar-type trial function. Using the trial function with 
and without the polarization term in (I 1) and making a comparison between the two cases, 
the correction effect can be studied. 

Using the trial function with the polarization term, we have obtained that the binding 
energy EB(D-) of 2n PQDS is equal to 0.454, 1.110, 1.760, 2.914 and 7.975 Ry* for y = 0, 
1, 3, 10 and 100, respectively. The corresponding ratio R of Lhe binding energy difference 
due to omission of the polarization term to the binding energy is given as 0.3255, 0.165, 
0.134, 0.125 and 0.086. It is shown that the correlation effect on binding energy decreases 
with increasing y .  

Our calculated results have also shown that the correlation effecrs in 2D RQDs are about 
the same as those in 2D PQDs when y = y* .  Furthermore, the effects decrease with 
increasing y ( y ' )  for 3D QDS much faster than those for ZD QDS, and, for example, the ratio 
R is respectively equal to 0.479, 0.111, 0.072, 0.045 and 0.018 for 3 0  QDs with y = 0, I ,  
3, IO and 100. This is because of the dimensionality effect and the fast rate of decrease of 
the confinement region of the electron in 3D QDs. 

In addition to the binding energies of D- centres in QDs, the variational parameters 11, 
AZ and C are useful quantities to ascertain electron correlation, as they provide some insight 
into the spatial extension of the trial function. At y ( y ' )  = 0, the best values of A,, A? 
and C are respectively 1.075, 0.478 and 0.312 for 3D D- and 1.12, 0,505 and 0.587 for 2D 
D- while the best values of AI  and AZ with C = 0 are respectively 1.039 and 0.283 for 3D 
D- and 1.08 and 0.28 for ZD D-. For C f 0, both the AI  and A2 increase with y (y ' )  
and the difference AA = A I  - A2 changes with y (y ' )  very slowly. For C = 0, however, 
A1 increases and the A2 decreases, so AA increases with increasing y (y'). For example, 
the values of AI  and A2 with C # 0 and C = 0 of D- centres in 2D PQDs are shown in 
figure 2. What we have mentioned above clearly demonstrates that the finite value of C of 
(11) not only introduces an important correlation effect but also modifies the behaviour of 
the single-electron orbitals. 

In conclusion, we have used the exact solution and the Chandrasekhar-type trial function, 
which consists of the exact eigenfunction of the Hamiltonian H ( i ,  Ai), and obtained the 
binding energies of Do and D- centres in QDS. The dimensionality and potential-shape 
effects of QDs on EB(DO) and &(I-) and the ratio U have been studied. The study of 
the binding energy and electron-correlation and freeze-out effects of D- centres in different 
QDs is important not only to understand electronic structures in low dimensions but also to 
explain the experiments on D- centres in 2~ QWS 13.41 in a magnetic field and in other 
kinds of QW structure. Since 2D QWs in a magnetic field form a kind of QD between 3 D  
and 2D PQDs and D- centres could be located anywhere in QDs, it should be interesting to 
study the positional dependence of D- states in RQDs, PQDs and other kinds of quantum 
dot. Finally, it is worthwhile to point out that the D- excited states can be quite different 
between different QDs. This is an interesting subject to study further. 
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